This simple electrical device does much of the fundamental work of modern civilization, and it does so modestly and invisibly.

transformerAn early AC transformer constructed by George Westinghouse in the 1890s. 

I have always disliked exaggerated claims of imminent scientific and technical breakthroughs, such as inexpensive fusion, cheap supersonic travel, and the terraforming of other planets. But I am fond of the simple devices that do so much of the fundamental work of modern civilization, particularly those that do so modestly—or even invisibly.

No device fits this description better than a transformer. Non-engineers may be vaguely aware that such devices exist, but they have no idea how they work and how utterly indispensable they are for everyday life. (A transformer is a device that transfers electricity between two circuits while changing voltage, that is the “pressure” of the electric current’s power.)

The very next year, a better design was introduced by a trio of American engineers—William Stanley, Albert Schmid, and Oliver B. Shallenberger, who were working for George Westinghouse. The device soon assumed the form of the classic Stanley transformer that has been retained ever since: a central iron core made of thin silicon steel laminations, one part shaped like an “E” and the other shaped like an “I” to make it easy to slide wound copper coils into place.

In his address to the American Institute of Electrical Engineers in 1912, Stanley rightly marveled at how the device provided “such a complete and simple solution for a difficult problem. It so puts to shame all mechanical attempts at regulation. It handles with such ease, certainty, and economy vast loads of energy that are instantly given to or taken from it. It is so reliable, strong, and certain. In this mingled steel and copper, extraordinary forces are so nicely balanced as to be almost unsuspected.”

The biggest modern incarnations of this enduring design have made it possible to deliver electricity across great distances. In 2018, Siemens delivered the first of seven record-breaking 1,100-kilovolt transformers that will enable electricity supply to several Chinese provinces linked to a nearly 3,300-kilometer-long, high-voltage DC line.

The sheer number of transformers has risen above anything Stanley could have imagined, thanks to the explosion of portable electronic devices that have to be charged. In 2016 the global output of smartphones alone was in excess of 1.8 billion units, each one supported by a charger housing a tiny transformer. You don’t have to take your phone charger apart to see the heart of that small device; a complete iPhone charger teardown is posted on the internet, with the transformer as one of its largest components.

But many chargers contain even tinier transformers. These are non-Stanley (that is, not wire-wound) devices that take advantage of the piezoelectric effect—the ability of a strained crystal to produce a current, and of a current to strain or deform a crystal. Sound waves impinging on such a crystal can produce a current, and a current flowing through such a crystal can produce sound. One current can in this way be used to create another current of a very different voltage.

And the latest innovation is electronic transformers. They are much reduced in volume and mass compared with traditional units, and they will become particularly important for integrating intermittent sources of electricity—wind and solar—into the grid and for enabling DC microgrids. Without transformers, we would not have the age of ubiquitous electricity and be stuck in the era of oil lamps and telegraph.

The article was adapted from wired.com.